Is science sometimes in danger of getting tunnel vision? Recently published ebook author, Ian Miller, looks at other possible theories arising from data that we think we understand. Can looking problems in a different light give scientists a different perspective?

Share this |

Share to Facebook Share to Twitter Share to Linked More...

Latest Posts

Archive for February, 2016
In the last post, I presented data for the covalent bonds of the A – B compounds of the Group 1 elements that showed to a reasonable degree that the atoms each had a characteristic covalent energy, in the same way there is a covalent radius, and that the bond energy of the A – B bond is the sum of the A and B contributions. This goes against all the standard textbook writings. In an earlier post I stated that previously I had submitted a paper that would lead to a method for readily calculating these bond energies, but the paper was rejected by the editors of some journals on the grounds that either these are not very important molecules, or alternatively (or both) nobody would be interested. This annoyed me at the time, but is seems to me they had a point.  These blog posts have received absolutely no comment.  Either nobody cares, or nobody is reading the posts. Either way, it is hardly encouraging.
Now, the next point that could have been made is that when we get to more common problems, the bond energies are not additive in that way. Or are they? One problem I see is the actual data are not really suitable for reaching a conclusion.
Let's consider the P –P bond energy, which is needed for considering the bond additivity of any phosphorous compounds. I made a quick calculation of the P – P bond energy in diphosphine, on the assumption that the P – H bond energy was the same as in phosphine, and I got the energy 242 kJ/mol. If you look up some bond energy tables, you find the energy is quoted as 201 kJ/mol. How did they get that?  If you consider the heats of atomization of phosphorus, the bond energy is 221 kJ/mol, but if we assume that is in the P4 form, it would be in the tetrahedrane structure, which will be strained (although the strain will also stabilize lone pairs) and of course the standard state will be a solid, so in principle energy should be added to get it into the gas phase before atomizing to make the comparison, so it is reasonable to assume that the real bond energy will be stronger than that indicated by that calculation.
The problem is obvious: to make any sense of this, we need more accurate data. We also need the data to involve energies of atomization, and not rely on the more easily obtained bond dissociation energies. But as far as I can see, the chemical community has given up trying to establish this data. Does it matter? I think it does. For me, a problem with modern chemical theory, which is essentially extremely complicated computations, is that it offers little assistance to the issues that matter for the chemist because there are no principles enunciated, but merely results and comments on various computational programs. The principles are needed, even if the calculations are not completely accurate, so that chemists can draw conclusions, and use these to formulate new plans of action. How many really think they understand why many synthetic reactions work that way? Do we care about the very fundamental component of our discipline? And, for that matter, does anyone care whether I write this blog?
Posted by Ian Miller on Feb 29, 2016 2:14 AM GMT
In my last post, I presented evidence that the covalent radius of a Group 1 metal was constant in the dimeric compounds. I also asked whether anyone was interested. So far, no responses, and I suspect the post received something of a yawn, if that, from some because, after all, everyone "knows" there is a constant covalent radius. There is, of course a problem. Had I included hydrides, the relation would not have worked. Ha, you say, but the hydrides are ionic. Well, the constant covalent radius of hydrogen simply does not work for a lot of other compounds either. Try methane, ammonia and water.  There are various alternative explanations/reasons, but let us for the moment accept that hydrogen does not comply with this covalent radius proposition.
 
If the covalent radius of an atom is constant, then there should be a characteristic wavelength for each given atom when chemically bound, which in turn suggests from the de Broglie relation that the bonding electrons will provide a constant momentum value to the bond. While that is a little questionable, if true it would mean the bond energy of an A – B molecule is the arithmetic mean of the corresponding A – A and B – B molecules. Now, one can argue over the reasoning behind that, but much better is to examine the data and see what nature wants to tell us.
 
Pauling, in The Nature of the Chemical Bond stated clearly that that is not correct. However, if we pause for thought, we find the arithmetic mean proposition depends on no additional interactions being present in addition to those arising from the bonding electrons forming the covalent bond. Thus atoms with a lone pair would be excluded because the A – A bonds are too weak, such weakness usually attributed to lone pair interactions. Think of peroxides. Then, bonds involving hydrogen would be excluded because the covalent radius relationship does not hold. Bonds involving hybridization may produce other problems. This is where the Group 1 metals come to their own: they do not have any additional complicating features. Far from "not being very interesting" as one editor complained to me, I believe they are essential to starting an analysis of covalent bond theory. So, what have we got?
 
The energies of the A – A bonds are somewhat difficult to nail down. Values are published, but often there is more than one value, and the values lie outside their mutual error bars. With that reservation, a selection of energies (in kJ/mol) are as follows:  Li2 102.3; Na2 72.04, 73.6; K2 57.3; Rb2 47.8; Cs2 44.8
 
The observed bond energies for A – B molecules are taken from a review (Fedorov, D. A., Derevianko,  A., Varganov, S. A. J. Chem Phys. 140: 184315 (2014)) Below, the calculated value, based on the average of the A – A molecules are given, then in brackets, the observed energy, then the difference δ expressed as what has to be added to the calculated value to get the observed value.
                  Mean     Obs          δ
Li – Na        88.0   (85.0)     -3.0
Li – K         79.8    (73.6)     -6.2
Li – Rb       75.1    (70.9)     -4.2
Li – Cs       73.6     (70.3)    -3.3
Na – K       65.5     (63.1)    -2.4
Na – Rb      60.7    (60.2)    -0.5
Na – Cs      59.2     (59.3)     0.1
K – Rb        52.6    (50.5)    -2.1
K – Cs        51.1    (48.7)     3.4
Rb – Cs      46.3    (45.9)    -0.4
 
The question now is, does this show that the bond energies are the arithmetic means of the A – A and B – B molecules? Similarly to my last post, there are three options:
(1) The bond energies are the sum of the atomic contributions, and the discrepancies are observational error, including in the A – A molecules.
(2) The bond energies are the sum of the atomic contributions, and the discrepancies are partly observational error, including in the A – A molecules, and partly some very small additional effect.
(3) The bond energies are not the sum of the atomic contributions, and any agreement is accidental.
What do you think? Are you interested?

 
Posted by Ian Miller on Feb 8, 2016 2:03 AM GMT